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Computation of the Ideal Class Group of Certain Complex 
Quartic Fields 

By Richard B. Lakein 

Abstract. The ideal class group of quartic fields K = F(\/7), where F = Q(i), is calculated by 
a method adapted from the method of cycles of reduced ideals for real quadratic fields. The 
class number is found in this way for 5000 fields K = F(-.1/7), ir =_ 1 mod 4, ir a prime of F. 
A tabulation of the distribution of class numbers shows a striking similarity to that for real 
quadratic fields with prime discriminant. Also, two fields were found with noncyclic ideal 
class group C(3) x C(3). 

1. Introduction. In a famous paper of 1842, Dirichlet [1] extended Gauss' theory 
of binary quadratic forms to forms whose coefficients are Gaussian integers. In 
modern terms, he studied quadratic extension fields K of the Gauss field F = Q(i). 
The high point of the paper is the beautiful theorem that when K is the composite 
of quadratic fields, so K = Q(Vm, /-in), the class number of K equals the product 
of the class numbers of the quadratic subfields Q(Nin), Q(V-in), or one-half this 
product, with a simple criterion to distinguish the two cases. 

In case K is not of this special form so K = F(V-i), I a squarefree Gaussian 
integer which is neither real nor purely imaginary then K/Q is a quartic, non- 
Galois extension with no quadratic subfield except F. In this paper, a modified 
version of the classical method for real quadratic fields, counting periods of reduced 
ideals, is adapted to the relative quadratic extension K/F and used to calculate the 
class number h of K. 

In a previous paper [8], I calculated, for 1000 fields K, the class number h-or 
rather a close approximation to h, by estimating the Dirichlet L-series in the analytic 
class number formula. Here, the class number is calculated exactly, by finding the 
ideal class group. The results of the earlier (approximate) computation are here 
confirmed and extended to 5000 cases. The remarkable empirical distribution of 
class numbers for real quadratic prime discriminants 80% have h = 1, 10% have 
h = 3, etc. occurs in this quartic situation, as first reported in [8]. At the end of 
the paper, we tabulate the distribution for the 5000 cases, along with the corre- 
sponding data for real quadratic fields. Finally, we note that, in 1006 cases with 
h > 1, the computation found just 2 cases with noncyclic ideal class group: 
C(3) x C(3). 

In Section 2, we discuss the fields K and explain why the method for the 
quadratic case must be modified. The method is given in' Section 3, and, in Section 
4, the numerical results are discussed. 

2. The Quartic Field K. Let F = Q(i), the Gauss field, and G = Z[i], the 
Gaussian integers. Let K = F(iX), where I E G, squarefree, and let I be the ring 
of algebraic integers of K. Then (see [2]), I has a relative integral basis 1, 2 over G, 
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I = G[i2], where 

2= ( + a) ,i, if P _0 I2+ mod 4, 

=(I + 0)(10 + i), if I-+ + 2i mod 4, 

otherwise. 

The relative discriminant 8 of K/F is 8 = p,5 2p, or 4p, respectively, while the 
absolute discriminant of K is D = 16N3. (NS = 1812 = norm .) An integral ideal 
has a canonical G-basis 

a = [a,f3 + y4], v( + -yi2) O mod a, 

where v denotes the relative norm from K to F. Any ideal is equivalent to (in the 
same ideal class as) a primitive ideal (no factor in F) having y = 1. A primitive ideal 
a = [a, 1 + i2] has relative norm a and absolute norm Na = Na = jal2. As in the 
quadratic case, we make the correspondence 

(1) a = [a,1 + 02] *-A = (/3+ 2)/a, 

where A is a quadratic irrational over F. 
In analogy to the quadratic case, two ideals a,, Q2 are equivalent if and only if 

the corresponding quadratic irrationals Al, A2 are equivalent complex numbers: 

A2 = (aAl + b)/(cAj + d), a, b, c, d E G, ad-bc = ?15 ?i. 

Recall that, in the quadratic case, one calculates the periodic continued fractions 
(CF's) of the quadratic irrational, each pure period representing an ideal class of 
the quadratic field. Thus, one simply counts the number of distinct periods to obtain 
the class number. This is essentially the method used to construct the tables of Ince 
[5] and others. A complex CF will be introduced for our quartic fields, after we note 
some other analogies to the quadratic case. 

The decomposition of a prime r of F in K is quite similar to the quadratic case 
-see [2]. In particular, r splits in K, r = pp', if and only if 8 is a quadratic residue 
of 7 (for # 0 1 + i). If 7 = I+i and 8 = p-'1 mod 4, 7 splits if and only if 
8 1 mod 4 + 4i. The group of units of K has one fundamental unit E0. Finally, 
if 8 = = r is a Gaussian prime, we say K has prime discriminant; as in the 
quadratic case, for such a field the class number is odd. 

There is a complex generalization of continued fractions due to Hurwitz [3]. It 
generalizes not the usual CF but the "nearest integer" CF (which can be used for 
the real quadratic calculations). The complex CF is defined by partitioning the 
complex plane into unit squares U(a) centered at points a E Z[i]: 

U(a) = {a + u + vi Iu, v real,-2 = 2,-2 = 2} 

If z E U(a), we say that a is the nearest Gaussian integer to z. Now, given a 
complex number x, we expand it in a simple CF: 

1 1 1 1 
(2) x = xo = ao + -= (ao~a1,5 . a.X. l 
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where x, = a, + 1/xn+l, and the partial quotient an is the nearest Gaussian integer 
to xn. 

As expected, the CF for x terminates (some Xn = an E Z[i]) 4 x E F; and the 
CF for x is periodic X x is quadratic irrational over F. Furthermore, for a given 
discriminant 6, there are only a finite number of distinct periods. However, unlike 
the situation in the real quadratic case, it is not the case that distinct periods always 
correspond to distinct ideal classes. A preliminary computation produced a field 
with two distinct periods representing the same class. Details will be given in Section 
4. 

Thus, it is preferable to calculate with ideals, making use of the structure of the 
ideal class group. There is a helpful analogue to the well-known "Gauss bound" for 
the fields K ([6],[7]). In every ideal class of the field K = F(6) with relative 
discriminant 6, there is an integral ideal a with norm Na ? B = D 8 = 2 N 8. 
(The corresponding "Gauss bound" for the real quadratic fields is d_.) So it is 
sufficient to find all primitive ideals of K with norm ? B and determine how many 
ideal classes are represented. A further simplification comes from observing that 
such ideals are products of prime ideals p = [T, p + 2] with norm Np = N7 _ B, 
so the class group can be generated starting with these prime ideals. 

3. The Method for Fields K with Prime Discriminant. These fields are obtained 
by generating successive rational primes P -1 mod 8, with P = N6 = a2 + b2, a, 
b > O. 41b, so 6 = a + bi +1 mod 4. Then K = F(6). Since 6 itself is the only 
prime that ramifies, using the "Gauss bound," we need only consider primes 7 
which split in K. 

(I) Given 6, determine which 7 with N7 ? B = 2P split in K, which we 
denote by X(7r) = + 1. First, x(l + i) = + 1 4 6- ? mod 4 + 4i. For ir #1 + i, 
we calculate a "Gaussian Jacobi symbol" X(7): 

X(,g) = [6/n] = + 1 . 6 _ x2 mod 7, x E G. 

The calculation of this symbol is like that of the ordinary rational Jacobi symbol, 
except of course for using the quadratic reciprocity law in F ([1, p.556],[6, p.390]). 
Note that if N7T = 7Tii = p, we need compute only X(7T); then X(t) = X(7T)(P/p), the 
last a Legendre symbol in Q. Those primes g for which X(,g) = +1 are stored in an 
array S; they split in K, g = pp', where p = [T, p + 2], and the ideals P generate 
the class group. In particular, h = 1 if and only if these ideals p are all principal. 

(II) Next, the basis number 2 = 2(E + 6), which corresponds by (1) to the unit 
ideal [1,2], is expanded in a CF, (2) until the end of the partial period is reached, 
where a complete quotient recurs, possibly with a unit factor ie. That is, we set 
x0 = 2 and let the complete quotients and corresponding ideals be 

(3) Xn = 2n = (bn + ?2)/a, <-4 [a., bn + 2]. 

In all cases computed, xl = 21 is purely periodic; it may always be the case. So, 
eventually, xm = (bi + 2)/ie, Xm+I = ieXI, and the primitive partial period is 
21 = xI = (cl, c2, .. . . cm, ieX ). After this, the ideals in (3) repeat since [ika, 1 + 2] 
= [a,13+ 2]. 

We should point out that, calculating just the denominators q. of the conver- 
gents of the CF for 21, we have a unit E = qmxm+l + qm-I which is the fundamental 
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unit E0 for all the cases computed, except only for 6 = 1 + 4i, 5 + 4i, when 
L = EL2 

Of course, all the ideals in (3) are principal. Therefore, each a, in (3) is compared 
with each r E S; if a, = ikVT, r E- S, then the prime divisors A, P' of vT are 
principal and make no contribution to the class group. Accordingly, VT is eliminated 
from S. In a very few cases, all vT E S are eliminated this way and it follows that 
h = 1. 

(III) If the principal period fails to exhaust S, we find the basis of P for each 
remaining S: 

(4) p = [t, p+ ], so '= [VT, (VT-p- ) +E ]. 

This means solving the quadratic congruence v(p + Q) = p(p + E) + (,2 - 6)/4 
- 0 mod ST. (Since NV7T < FP < 250 in this computation, no special tricks were 
used.) 

Then each ideal p (4) is tested. It is principal if and only if the CF of 
A, = (p + i)/VT falls into the principal period, so we need only test if a complete 
quotient (r + 2)/s has s = Ik* If so, Vr is eliminated from S. In case all X E S are 
disposed of, again it follows that h = 1. Otherwise, for some vT, the partial period of 
A, is reached without any s = ik, so the ideal P (4) is nonprincipal and so h > 1. 

(IV) If h > 1, let ST be the smallest prime remaining in S. The prime divisor P of 
VT is in a nonprincipal ideal class C, and we calculate the cyclic group generated by 
C: p E C, p2 E C2, ... pn E C' = I, the principal class. However, we do not 
merely calculate powers of p; the following simple modification is more suitable and 
has the advantage of avoiding any need for multiple-precision arithmetic when h is 
large. 

Expand x = A, = (p + Q)/VT in a CF until the end of the partial period is 
reached, and choose an xj in the period, which we denote AI = (P3I + Q2)/a,, and its 
corresponding ideal a, (1), to represent the class C of p. Recursively, given a 
representative 

(5) a m = [amflm + Q] *-*Am = (Pm + S2)/atm 

for the class Cm, calculate the ideal product amop (in essentially the same way as in 
a quadratic field). Then expand in a CF its corresponding quadratic irrational as 
before and take a?m+, = [aCm+ ,m+l + E2] in the periodic part. Thus pm+l (Imp 

am+l, so aIm+, represents Cm+'. Since Np = N7T < vF, and an ideal in the 
period has Na = Na < P, so N(atp) < P, which is easily single precision. 

Now, each class Ctm is represented by a "reduced" ideal (purely periodic) (am in 
(5), with am, g3m stored in a table. The procedure continues until, finally, the 
principal period is encountered, so pn - 1, C' = L. 

(V) Once the cyclic group generated by p has been produced, the other 
remaining primes K E S are are considered. Each K has a nonprincipal prime ideal 
and corresponding quadratic irrational 

(6) q [Ka X + 0] B, = (X + Q)/K. 

We expand BK in a CF; at each step the complete quotient (r + O)/s is compared 
with the list of representatives (5) of the classes Cm. When a match is found-r 
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= m, S = ikam then q - am - pm, and so q contributes nothing new to the class 
group. 

If for every K E S the ideal q - pm for some m, then, since the class group is 
generated by these prime ideals, the group is cyclic, generated by the class C of P. 

There are three cases when the group is not settled in this way: 
(a) The class group is cyclic, but P generates a proper subgroup. Repeating the 

procedure in (IV), (V) for a prime ideal outside this subgroup eventually generates 
the whole group. 

(b) The class C does indeed generate the whole group, but some prime ideal q 
is a "mismatch" q - am - pmu but the period of BK is distinct from that of Am. 
We may check that am q' 1, so q is in the cyclic group. This occurred only two 
times during the computation. Details will be given in Section 4. 

(c) The class group is noncyclic and our procedure can only produce cyclic 
subgroups. This occurred in two cases where the group is C(3) x C(3), and all four 
cyclic subgroups of order 3 were obtained. 

4. Results. Using the above method, we computed the ideal class group, and so 
the class number, for 5000 prime discriminants 6 +1 mod 4, 17 _ N8 
_ 226241. The case where 6 is a rational prime p 3 mod 4 was excluded, since 
Dirichlet's theorem applies to show h = h(p)h(-p), the product of the quadratic 
class numbers. Also Eo = ic0, where E0 is the fundamental unit of Q(N/p). 

(A) Out of 5000 cases, 3994 have h = 1, 1006 have h > 1. We list in a table the 
cumulative distribution of class numbers, along with the corresponding data for the 
quadratic case (copied from [10]). The data provide empirical evidence that the 
mysterious distribution of class numbers previously noted in the real quadratic case 
is the same for this quartic case. (That is, of course, if there actually is a fixed 
asymptotic distribution.) 

We conjecture the same distribution for the fields K quadratic over F 
= Q(V-in) having class number 1: m = 2, 3, 7, 11, 19, 43, 67, or 163. In the first 
4 cases, where there is a CF over F, it may be possible to test the conjecture. The 
distribution might even occur for K quadratic over any fixed complex quadratic 
field F although this is more speculative, since in this general case the computa- 
tions are probably infeasible. 

(B) Of the 1006 cases with h > 1, all but two fields have a cyclic class group. 
(Only the 64 cases with h = 9, 25, 27 are in question.) The two noncyclic groups 
occur for 

P =54713, 6 = 107 + 208i; 

P = 201881, 6 = 91 + 440i. 

In both cases, h = 9 and the class group is C(3) x C(3). We may note (see [11, p. 
75]) that of the first 5000 real quadratic prime discriminants, exactly two have 
noncyclic class group: d = 32009, 62501, group C(3) x C(3). 

(C) Recall that after stage (II) of the procedure, the array S contains Gaussian 
primes r which split in K into prime ideal factors p, p' which are not in the principal 
period. We denote the prime in S of smallest norm by m1; or if there are two such 
primes with the same smallest norm, then they are complex conjugates: sTI, 5 i. Then 

we denote a prime ideal factor of 71 [respectively s71] in K by P, [pi ]. 
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Now, if h = 1, then, of course, pi [a,] becomes principal. It is remarkable that 
in all 1006 cases with h > 1, t, [and T5] remains nonprincipal. That is, pi [and T1] 
becomes principal exactly when h = 1. A check of the first 5000 real quadratic 
prime discriminants found the identical situation: the analogous prime ideal pi (that 
is, the splitting prime ideal of the smallest norm that remains after the primes in the 
principal period have been eliminated) becomes principal only when h = 1.Here is 
either a remarkable coincidence or a new conjecture. 

We may also note that of the 1004 cyclic (quartic) cases with h > 1, in all but 
23 cases, the class group is generated by p, or by A,. 

(D) There were other interesting results, all due to peculiarities of the CF. First, 
in real quadratic fields [5] conjugate ideal classes are always represented by 
conjugate periods of ideals. Such is frequently not the case here (nor for the 
quadratic case if the nearest integer CF is used). An example is P = 2137, ( 
= 29 + 36i, where h = 7 and pi = [1 + i, 2]. Using the notation of [5], we 
represent the ideal [a, b + i] by just ab. The periods of (equivalent) ideals for the 
conjugate classes C, C6 are as follows: 

C: 3 + 2i, 3 + 2i -1 + i, 2 + 2i, 

C6: 3 + i, 3 + i 1 I + i, 2 + i. 

(E) A second point of interest concerns the length of the preperiod of-a periodic 
CF. In the quadratic case, given any ideal [a, b + w] with norm = a < 2\d, it is 
easy to see that the (usual) CF for a = (b + w)/a has at most a one-term preperiod. 
Using the nearest integer CF, it is easy to find 2-term preperiods. In the present 
complex quartic case, we encountered, for analogously restricted ideals a, preper- 
iods up to 9 terms long. No extensive check was made, but it seems possible that 
there is no bound on the length of the preperiod, even for ideals with norm below 
the "Gauss bound." Of course the uncertainty about the preperiod length makes it 
more tedious to check for the end of the period. 

(F) A final, more serious peculiarity occurs for P = 2633, 8 = 43 + 28i, which 
also has h = 7, pi = [1 + i, S2]. The ideals 

a = [4, 3 + 2i + S], b = [4 - i,5 - i + 2] 

are equivalent, both in C3. Let their corresponding quadratic irrationals be 
A = (3 + 2i + Q)/4, B = (5-i + Q2)/(4 - i). We find that B= (2A -i)/(A -i), 
so A and B are equivalent numbers, as expected. However, the CF's, which are purely 
periodic, give distinct cycles: 

A: 4, 3 + 2i --3 - 2i, 5 + i - -2 - 2i, 3 -i, 
(7) 

B: 4 - i, 5 - i 1 - 3i, 4 + 2i --2 - 4i, 5. 

It turns out that the conjugate class C4 is also represented by two distinct cycles, 
each conjugate to one of the above cycles. 

The class group of this field is of course cyclic, generated by pl, but the prime q 
dividing 3 + 2i is a "mismatch," since its period (that of A in (7)) has no match with 
the representative of C3 (in the period of B in (7)). It is easy to check that a3 q' is 
principal so that q E C3. This mismatch is clearly a rare event, occurring only twice 
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in the computation, and it is easily distinguished from the case where PI generates 
a proper subgroup of the class group. For in the latter case, if the subgroup has 
index k, only about 1/k of the primes in S will have their prime factors (6) in the 
subgroup. So one of the remaining primes in S is used and (except in the two 
noncyclic cases) eventually we obtain the whole cyclic group. On the other hand, in 
the case of a mismatch there will be only a very few primes of S left out of the group 
-just one prime in the case P = 2633 above; two primes in the only other case 
encountered, P=210209. For a mismatch q, we simply test if am q' is principal for 
1 ? m < n to find the class Cm to which q belongs. 

(G) Finally, we mention two old papers. J. Hurwitz [4] used a complex 
continued fraction to classify binary quadratic forms over Z[i] . However, his CF 
has only even Gaussian integers as partial quotients, and his forms are always 

2 C ax + 2bxy + cy2. For the fields in our computation with 8 +5 mod 4 + 4i, J. 
Hurwitz' CF usually gives as class number 3h, where h is the actual class number, 
so this method is unsuitable. G. B. Mathews [9] used, as we do, A. Hurwitz' CF, and 
his forms need not have an even middle coefficient. However, his basic definition of 
a reduced form is faulty, although it is not clear how much of his results are thereby 
invalidated. 

The computation was done between November, 1972, and March, 1973, on a 
CDC 6400 at SUNY at Buffalo. In the final run, 12 minutes of CP time were 

TABLE 

Cumulative distribution of class numbers for first 5000 prime discriminants 

Quartic Quadratic 

h= 1000 2000 3000 4000 5000 cases 1000 2000 3000 4000 5000 

1 830 1635 2427 3225 3994 816 1622 2420 3198 3987 

3 100 208 310 410 525 101 213 306 422 522 

5 35 65 113 155 198 35 70 111 145 183 

7 14 31 47 69 85 22 36 58 79 98 

9 5 13 25 37 56 9 16 34 50 66 

11 6 14 19 22 28 6 10 13 19 29 

13 3 11 19 22 30 5 8 14 20 28 

15 2 8 13 15 21 2 7 13 16 20 

17 3 6 10 15 19 1 2 7 9 11 

19 - - 2 5 6 - 2 5 8 11 

21 - 1 1 3 6 1 1 2 5 7 

23 1 1 3 4 5 - 2 2 3 4 

25 1 1 1 2 3 - 1 4 7 10 

27 - 3 3 4 5 1 3 3 4 4 

29 - 1 2 2 3 - - 1 2 4 

>30 - 2 5 10 16 1 4 7 13 16 
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required to generate 5000 fields and to determine the 3994 cases with h - 1; 10 
minutes more were required to calculate the class group for the remaining 1006 
cases. A copy of the complete table has been deposited in the UMT file of this 
journal. 
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